P-type semiconductor - translation to Αγγλικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

P-type semiconductor - translation to Αγγλικά

ONE THAT HAS BEEN DOPED, THAT IS, INTO WHICH A DOPING AGENT HAS BEEN INTRODUCED, GIVING IT DIFFERENT ELECTRICAL PROPERTIES THAN THE INTRINSIC (PURE) SEMICONDUCTOR
P-type semiconductor; N-type semiconductor; P-type crystals; N-type crystals; P-type silicon; N-type silicon; N-type (semiconductor); P-type (semiconductor); P-type doping

P-type semiconductor         
شبة موصل من النوع P.
N-type semiconductor         
semiconductor device         
  • An n–p–n bipolar junction transistor structure
  • A stylized replica of the first transistor
  • Operation of a [[MOSFET]] and its Id-Vg curve. At first, when no gate voltage is applied. There is no inversion electron in the channel, the device is OFF. As gate voltage increase, the inversion electron density in the channel increase, the current increases, and the device turns on.
ELECTRONIC COMPONENT THAT EXPLOITS THE ELECTRONIC PROPERTIES OF SEMICONDUCTOR MATERIALS
Semiconductor devices; Semiconductor device physics; Semiconductor Devices; Semiconductor electronics; Semiconductor component; History of semiconductor device development
جهـاز شبة موصل

Ορισμός

semiconductor
<electronics> A material, typically crystaline, which allows current to flow under certain circumstances. Common semiconductors are silicon, germanium, gallium arsenide. Semiconductors are used to make diodes, transistors and other basic "solid state" electronic components. As crystals of these materials are grown, they are "doped" with traces of other elements called donors or acceptors to make regions which are n- or p-type respectively for the electron model or p- or n-type under the hole model. Where n and p type regions adjoin, a junction is formed which will pass current in one direction (from p to n) but not the other, giving a diode. One model of semiconductor behaviour describes the doping elements as having either free electrons or holes dangling at the points in the crystal lattice where the doping elements replace one of the atoms of the foundation material. When external electrons are applied to n-type material (which already has free electrons present) the repulsive force of like charges causes the free electrons to migrate toward the junction, where they are attracted to the holes in the p-type material. Thus the junction conducts current. In contrast, when external electrons are applied to p-type material, the attraction of unlike charges causes the holes to migrate away from the junction and toward the source of external electrons. The junction thus becomes "depleted" of its charge carriers and is non-conducting. (1995-10-04)

Βικιπαίδεια

Extrinsic semiconductor

An extrinsic semiconductor is one that has been doped; during manufacture of the semiconductor crystal a trace element or chemical called a doping agent has been incorporated chemically into the crystal, for the purpose of giving it different electrical properties than the pure semiconductor crystal, which is called an intrinsic semiconductor. In an extrinsic semiconductor it is these foreign dopant atoms in the crystal lattice that mainly provide the charge carriers which carry electric current through the crystal. The doping agents used are of two types, resulting in two types of extrinsic semiconductor. An electron donor dopant is an atom which, when incorporated in the crystal, releases a mobile conduction electron into the crystal lattice. An extrinsic semiconductor which has been doped with electron donor atoms is called an n-type semiconductor, because the majority of charge carriers in the crystal are negative electrons. An electron acceptor dopant is an atom which accepts an electron from the lattice, creating a vacancy where an electron should be called a hole which can move through the crystal like a positively charged particle. An extrinsic semiconductor which has been doped with electron acceptor atoms is called a p-type semiconductor, because the majority of charge carriers in the crystal are positive holes.

Doping is the key to the extraordinarily wide range of electrical behavior that semiconductors can exhibit, and extrinsic semiconductors are used to make semiconductor electronic devices such as diodes, transistors, integrated circuits, semiconductor lasers, LEDs, and photovoltaic cells. Sophisticated semiconductor fabrication processes like photolithography can implant different dopant elements in different regions of the same semiconductor crystal wafer, creating semiconductor devices on the wafer's surface. For example a common type of transistor, the n-p-n bipolar transistor, consists of an extrinsic semiconductor crystal with two regions of n-type semiconductor, separated by a region of p-type semiconductor, with metal contacts attached to each part.